Formation of Co-ordinated Diphenylketen from Carbon Monoxide and an Alkylzirconocene(iv) Benzhydryl Complex; X-Ray Structure of $[{Zr(\eta - C_5H_5)_2(\text{OC}=CPh_2)}]_2$

Garry S. Bristow, Peter 9. Hitchcock, and Michael F. Lappert

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BNI SQJ, U.K.

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.
The zirconocene(ιν) dialkyls [Zr(η-C₅H₅)₂(CHPh₂)R] [R = Me, (1), or CH₂SiMe₃, (2)] react under ambient
conditions wit (2)], as well as $\left[\frac{Zr(\eta - C_5H_5)}{2\eta^2 - C(O)R}\right]$ (D)R₂] $\left[\frac{24\% \text{ from (2)}}{2\eta} \right]$; the X-ray structure of complex (3) shows that the molecule contains the nucleus $\frac{Zr-C-O-Zr-C-O}{V}$, with each of the Zr-O distances equ

that the molecule contains the nucleus Zr-C-O-Zr-C-O, with each of the Zr-O distances equal,

It is established that the carbonylation of a zirconocene(1v) dialkyl $[Zr(\eta - C_5H_5)_2R^1R^2]$ yields an η^2 -acylmetal complex $[Zr(\eta-C_5H_5)\{\eta^2-C(X)R^1\}R^2]$ (X = O), which may decarbonylate, but is generally otherwise stable.¹⁻³ Similarly an isonitrile R³NC gives the η^2 -iminoacylmetal complex (X = NR³); and, if $R^1 \neq R^2$, earlier evidence² indicated that insertion of CO or R3NC takes place into the more sterically demanding of the two groups \mathbb{R}^1 and \mathbb{R}^2 .

We now find that when the dialkyl is $[Zr(\eta - C_5H_5)_2(CHPh_2)R]$ $[R = Me, (1);$ or $R = CH₂SiMe₃, (2)$, then CO under ambient conditions affords the co-ordinated diphenylketen complex **(3),** $[{Zr(\eta - C_5H_5)_2(O=C=CPh_2)}_2]$. We further observe that the coproduct is $[Zr(\eta - C_5H_5)_2 \{\eta^2 - C(O)R\}CHPh_2]$ if $R = Me$, (4), or $R = CH₂SiMe₃$, **(5)**, but becomes the exclusive product, **(6)**, when $R = \text{CHPh}_2$. With methyl isonitrile, on the other hand, even the mixed alkyl-benzhydryl (1) or **(2)** affords a single iminoacyl $[Zr(\eta-C_5H_5)_2 \{\eta^2-C(NMe)CHPh_2\}R \mid R = Me, (7);$ or $R = CH_2SiMe_3$, (8)]. These data are summarised in Scheme 1, which additionally indicates three alternative proposed pathways to complex (3): (a), (b), or (c), with complexes (9) and/or **(10)** as possible intermediates. Finally, we show

that the molecular structure of **(3),** the first keten-zirconium derivative, is closely similar (see Figure 1) to that of the isoleptic titanium complex,⁴ which, however, was obtained from the metal(II) precursor $[Ti(\eta-C_5H_5)_2(CO)_2]$ and diphenylketen.

Pathway (a) appears to be the least likely, because the keten complex (3) does not form from **(4)** or **(5)** under the conditions of the experiment; thus a prolonged reaction time does not result in an increased yield of (3). This yield *[58%* from (2) or $24\frac{9}{6}$ from (1) in OEt₂ at 20 °C under 1 atm of CO, after 1-2 days; the isolated yield of (5) or (4) is 24 or 50%, respectively] is gauged with accuracy, as analytically pure **(3)** is precipitated from the solution, and is totally insoluble in the solvent.

Circumstantial evidence favours pathway (b), in so far as this requires a co-ordinated ketone-metal complex such as (10) as an intermediate. Thus we note that (i) $[Ti(\eta-C_5H_5)_2$ - $(CH₃Ph)₂$] with carbon monoxide affords $[Ti(\eta-C₅H₅)₂$ - $\{\eta^2$ -C(O)CH₂Ph }CH₂Ph], which reacts with further CO to give $[Ti(\eta - C_5H_5)_2(CO)_2]$ and the ketone (PhCH₂)₂CO;⁶ and (ii) $[Zr(\eta-C_5H_5)_2 \{\eta^2-C(O)Ph\}Ph]$ upon heating furnishes the complex $[\{Zr(\eta - C_5H_5)_{2}(\eta^2-Ph_2CO)\}_{2}]$.⁷ Furthermore, this pro-

Scheme 1. Reactions of some alkylzirconocene benzhydryls with CO or MeNC under ambient conditions, and alternative pathways [(a), (b), or (c)] for the formation of the diketen complex (3) ; there is no direct evidence for the possible intermediates (9) or (10) ; complexes **(1)-(8)** gave satisfactory analytical and spectroscopic data.

Figure 1. The molecular structure of $[\{Zr(\eta-C_gH_s)_{g}(\eta^2-C=C_F\})_{g}]$, (3). Some important dimensions are C(1)–C(2) 1.333(5), C(1)–O 1.353(5), C(1)–O 123.6(3)°, Zr–C(1) 2.204(3), Zr–O 2.164(2), and Zr–O' 2.165(2) Å.

posal provides a neat model for the well known heterogeneously catalysed conversion of acetone into keten, using a Cr-Ni alloy filament at 700-750 \degree C,⁸ whereby we propose that intermediates (11) and **(12)** [the oxidative addition product of (ll)] are implicated in the catalytic cycle, with reductive elimination of methane generating from **(12)** the coordinatively unsaturated precursor of **(11).** Alternatively complex (11) could be η^1 -O-bonded, as in the isoelectronic d² cation $[V(\eta - C_5H_5)_2(OCMe_2)]^{+,8}$

In complex **(9),** the Zr-R bond is expected to be labile; this, would facilitate the formation either of (10) [pathway (b)], or of the radical pair $[Zr(\eta-C_5H_5)_2 \{\eta^2-C(O)CHPh_2\}]-R$, a

possible intermediate for (c). In support of this bond-weakening, we note that the Zr-Me bond of complex **(7),** a close analogue of (9), is the longest Zr-C(sp³) bond yet found, $2.431(5)$ Å.¹⁰

Crystal data for complex (3): \uparrow C₄₈H₄₀O₂Zr₂, *M* = 831.29, triclinic, $P\overline{1}$, $a = 8.187(2)$, $b = 10.642(4)$, $c = 11.761(2)$ Å,

t The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1 EW. Any request should be accompanied by the full literature citation for this communication.

 $\alpha = 110.02(2), \beta = 98.47(2), \gamma = 101.69(3)^\circ, Z = 1$. The structure was solved by heavy-atom methods and refined by least-squares methods to $R = 0.040$ for 2450 reflections measured on a CAD **4** diffractometer using **Mo-K,** radiation. The two halves of the dimer are related by a crystallographic inversion centre.

We thank S.E.R.C. and B.P. Chemicals Ltd. (Hull) for the award of a CASE studentship (to G. **S.** B.), the S.E.R.C. also for assistance in the purchase of the diffractometer, and Professor F. McCapra for a useful discussion.

Received, 8th February 1982; Corn. I29

References

- **1** G. Fachinetti, G. Fochi, and **C.** Floriani, J. *Chem. Sac., Dalton Trans.,* **1977, 1946.**
- **2 M.** F. Lappert, N. T. Luong-Thi, and **C.** R. **C.** Milne, J. *Organomet. Chem.,* **1979, 174, C35; J.** Jeffery, M. F. Lappert, N. T. Luong-Thi, M. Webb, J. L. Atwood, and W. E. Hunter, *J. Chem. Soc., Dalton Trans.,* **1981, 1593.**
- **3** G. Erker and F. Rosenfeldt, J. *Organomet. Chem.,* **1980, 188, c1.**
- **4** G. Fachinetti, **C.** Biran, **C.** Floriani, A. Chiesi-Villa, and C. Guastini, *Inorg. Chem.,* **1978, 17, 2995.**
- **5 J.** L. Atwood, G. **K.** Barker, J. Holton, W. E. Hunter, M. F. Lappert, and R. Pearce, J. *Am. Chem. Sac.,* **1977,99,6645.**
- **6** G. Fachinetti and **C.** Floriani, J. *Chem. Soc., Chem. Commun.,* **1972, 654.**
- **7** *G.* Erker and F. Rosenfeldt, J. *Organomet. Chem.,* **1982, 224, 29.**
- **8** *Cf.,* W. **E.** Hanford and J. C. Sauer, *Org. React.,* **1946,3,108. 9** *S.* Gambarotta, **M.** Pasquali, **C.** Floriani, A. Chiesi-Villa, and
- **10 J.** L. Atwood, G. S. Bristow, W. E. Hunter, and M. F. **C.** Gaustini, *Inorg. Chem.,* **1981,** *20,* **1173.**
- Lappert, unpublished work.